
AD AO8I 488 6€I€RAL RESEARCH CORP SANTA BARBARA CA SYSTEMS TECP*IO—ETC F/s 9/2
USING EXECUTIVE ASSERTIONS FOR TESTING. (U)
NOV 79 D N APCREWS. a P BENSON F49620—79—C—0115

UNCLASSIFIED GRC—T1t 2282 AFOSR TR SO OI2Y PU.

I
I
I
p
I

I

II ~~~~~~II •
• L L g l~22

11111 ‘ ‘
L

111111125 IlIII~ IIItI~
MICROCOPY RE~OLUTION TEST CHART

—- -

L
L
I ~~~~~~~ s O - O I~27.

•
T chn lcal M.morandum 2282

* Using Executable Assertion s
for Testin g

CJD ~~~~.

__

1~iVEV O11~~~ _ _ _

EL.~I! ~
by

D. Andr waI
~~

.

~

,_
J. Bsnson

:~I
Novsmb r 1979

r

SYSTEMS TECHNOLOGIES GROUP

I G E N E R A L f l
RESEA RCH II C O R P O R A T I ON

A SUBSIDIARY OF FLOW GENERAL INC.
P.O. Box 6770, Santa Barbara, California 93111

• ___________
~~~~

-
~#- ~~~

, 
-

H

4.

~~

Research reported in this document was sponsored
by the Air Force Office of Scientific Research
(AFSC) , United States Air Force, under Contract
F49620—79—C—0115.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

UNçI~~#~IF~ ED
SECURITY  C L A S S I F I C A T I O N  OF THIS PAGE (When Data ent ered)

~~ ~im ~‘ ~~ BEFORE COMPLETING FORM
Lp~~~ q~~~ B 2 ~~~~~~~~~~~~~~ 3. n-~~~~Jr1~~n a _____

~~~~~~~~~ DncIIUE~~~ AT ,A ~ PA C E  READ INSTRUCTIONS

~~ ~~~~~ ~~~~~~~~ cL~~t~ c’~aL’ -,c-i ’,~i.

~~~ 
4~~ T ITL E (and Subtitle) . • . -. -

~~~~~~
- .----—

~~~~~~
-.

JJSING EXECUTABLE ASSERTIONS FORJESTING ’ / Inter im

~~~ 
. - . - - - - ——

.

—-- .--— •~ 6. PERFORMIN G ORG. REPORT NUMBER

- ~~~ ~~~~ - . .~- .. 8. CONTRACT OR G R A N T NUMBER(s) -
D. H~~Z~drews auth J

.:~~~ ,
o
~J ~~~ -

L — —

Ø~~~~

’ F4962~ -79_C~ ø11~
79. PERFORMING O R G A N I Z A T I O N NAME AND ADDRESS tO. pn ~~W~EC~EU~~~ T, P~~~5EtY~ T SIC

•~ .•. General Research Corporation AR E A 4 WORK UNIT

P. 0. Box 6770
~
_

r~. Santa Barbara, CA 93111 61102F 23%4 A2(
I I . CONTROLLING OFFICE NAME AND ADDRESS ~~ ~~2~~~~tro-nLaUE ..

~~~// Nov sr ~~79J
Air Force Of f i c e of Scientif ic Research/NM ______________
Boiling AFB , Washington, D. C. 20332 Fiv e

14. MONITOR ING AGENCY NAME & AODR ESS( I I  different from Controlling Office) IS. SECURITY CLASS. (of this report)

~~~~~~~~ 

~ I UNCLASSIFIED
15a . D E C L A S S I F I C A T IO N / D O W N G R A D I N G

SCHEDULE

16. DISTRIBUTION S T A T E M E N T (ot this Report)

Approved for public rel ease; d is t r ibut ion unlimited .

17. D I S T R I B U T I O N S T A T E M E N T (of the abstract entered in Block 20, if different from Report) . -

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revers, side if necessary and Identify by block number)

r

20. A B S T R A C T (Continue on reverse side Ii necessary and Iden t i fy by block number)
One of the ways of assuring greater reliability of software is to improve test-
ing techniques. Three of the key problems associated with software testing are:
choobing adequate test cases, assuring correctness of the results, and reducing
the high cost of testing . Some degree of automation is required to help solve
these problems. By combining the automated capability of adaptive testing with
the use of executable assertions, it is possible to execute a program with a
large number of testcases over a wide range of input values. The usual goal of
adaptive testing is to maximize some performance value (objective function) for

DD , ~~~~~~~ 1473 EDITION OF I NOV 65 IS OBSOLETE i2~..%~’ T7~~~~~Z~~~~~~~PTI ~~S~
__

~~~~ - ~~~~
. - 

~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~


— ‘~~‘‘~7’ .~ _
~ ‘-~—

...—.-.—--

/ -
• .

~~~~~~~~~~~~~~ 

• 
-
~~~~~

, ~~~~~~~~~

-

~

~~
—

~~

_ _ _ _ _ _ _

UNC LA SSIJ -IEI) -

— - -

SECURITY CLASSIFICATION OF THIS PA GE(Wbon Data Entered)

20. Abstract cont.
-

the software by automated perturbation of the input parameters. This technique
only indirectly leads to locating errors, because of the time—consuming task of
examining the usual output from the program . In software testing , the primary
goal is to locate the maximum number of errors rather than max imize the perf or—
mance value. Since software errors can be detected by executable assertions, ti ~se
assertions can be used to def ine an objective function for the Adaptive Tester
so that a program can be tested automatically and a mapping made of its “error
space.” A search algorithm is used to generate new test cases based on past
performance data about the number of assertion violations. Software testing
can become much more efficient and effective through the use of adaptive test—
ing with assertions, because such extensive testing increases the possibility oi
finding any existing errors and of improving software reliability ,

i - s

- - .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

P ~~~~~~~~~~

-
. - ,

t- : 1
• .

USING EXECLTrABLE ASSERTIONS FOR TESTING

1 0. N. Andre ws and J. P. Benson
General Research Corporation

P.O. Box 6770
Santa Barbara , California 931111 805—964—7724 ext. 336

Abstract In software testing, however , we are not so
much interested in maximizing performance as in

I One of the ways of assuring greater reliability locating errors. The technique of maximizing a
of software is to improve testing techniques. Three performance function only ind irec tly hel ps to locate
of the key problems associated with software testing errors in the software. Errors are usually discove—
are: chooaing adequate test cases , assuring correct— red by examining the output of a program, which is a
ness of the results, and reducing the high coat of tine—consuming task. Since software errors can be

I testing. Some degree of automation is required to detected through the use of assertions , assertions
help solve these problems. By combining the auto— can be used as the objective function , thus allowing

- mated capability of adaptive testing with the use of the adaptive testing techniques to be applied to the
executable assertions, it is possible to execute a problem of testing software.
program with a large number of testcasea~ over a Wide
range of input values. The usua l goal of adaptive Executable Assertions

L testing is to maximize some performance value
(objective function) for the software by automated Almost any condition or specification can be

• perturbation of the input parameters. This technique expressed using executable assertions. An executable

the time—consuming task of examining the usual output to false , signals the violation of a specificationL
onl y indirectly leads to locating errors , because of assertion is a logical expression which , if evaluated

- • I~ from the program. In software testing, the primary for the program. The logical operators of the
goal is to locate the maximum nmmber of errors rather assertions have been extended to include the oper—
than maximize the performance value. Since software ators of first—order predicate calculus: implics—

r errors can be detected by executable assertions , tion , ex istence , and universal quantifiers. A
these assertions can be used to define an objective preprocessor translates the assertions into execu
function for the Adaptive Tester so that a program table statements. When the program is executed , the

• can be tested automatically and a tapping mane of its logical expression in each assertion is evaluated.
error space.” A search algorithm is used to gen— If it is false , an error message is printed which

r erate new teat cases based on pest performance data states the name of the module and the line number of
— I about the number of assertion violations. Software the assertion statement. In addition , a tabulation

testing can become much more efficient and effective is made of how many times an assertion is violated.
through the use of adaptive testing with assertions,
because such extensive testing increases the possi— Some examples of assertions (including one

V bility of finding any existing errors and of improv— which is a call to the logical function UUTCRK) are
inS software reliability,

as follows :

4 ,
Introduction INITIAL (VALUE .GE. 0.0 .AND . VALUE .LE . PP*TWOPI)

Testing is one area of the software development ASSERT (FM .LE. EA—S IN(EA) + EPS)
- -

. cycle where there is a need for vast improvement. It
is freq uen tly the most costly part of the cycle and ASSERT (.SOME . I IN (l ,N) (ARRAY(t) .GE. Ii))
the moat t ime—consuming . Wha t is needed is not to

- - .. put more money and time into testing, but to devise a FIRAL (OUTCRK(MODE ,VALUE , ORBEL ,STATE))
I r systematic method of exercising a program with a

I sufficient number of input values over the entire Assert&ons have many uses and are extremely
range of possible values in such a way that any valuable throughout the entire software cycle.
existing errors are discovered. To accomplish this Ideally they should be written during the design

~~
-. goal and to automate as much of the testing process phase to state specifications about the variables

as possible , the techniques developed for adaptive before any coding takes place. Later , during dynamic

[testing are being combined with the use of executable tests, these same assertions can be made executable
at aer tiona for error detection. to help in program debugging. Assertions can also be

left in the code as a form of documentation , because
r- Before software testing can be automated (and they can contain much useful information about

become cost effective), two primary problems must be variables (e.g., the expected range of values or , in

EL solved : developing adequate teat cases to identify distributed systems , path or timing constraints).
• errors , and verifying the results of these test These built—in specifications are a way of protecting

cases. The problem of developing test cases has been the software during deployment or maintenance from
studied in the Adaptive Verification and Validation modifications to the code which may alter the cx—

I I pected mode of operations.
research program. The method has been to use
various search techniques adapted from optimization Ada tive Testing
theory and artificial intelligence research in order

p

r to maximize a performance value (objective function Adapt ive testing is a technique for identifying
for the software). The original test cases (input how well a program perform s in response to changes in

I values) are either supplied by the tester or devel— its input vslues. The Adaptive Tester was developed
oped atochastically. These values are then altered, to test the response of simulated ballistic missile
through a feedback mechanism using heuristics , tO defense programs to changes in a threat scenario.I maximize the performance value . The program ’s performance was defined by the number

I AIR FORCE UF~ I~~ OF SCI~.~ TIFIC R •
of reentry vehicles which were not intercepted.

NOTI CE OF TRANSMI TT ;,L TO DDC ~ (.AFSC)
• • This technIcal 1 p c r t. t~~s bce~ r ov!cwe~ and I
-•

P~~~L C~~~L I ~ ase I A - ~’ Ai’~ ~~~-i2 (7 b) .
A. D. BLOSE

I T~~ h~ j c~ 1 Info”rnition Officer j
- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~. .. ~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~

_______ _____________
— - i -

The Adaptive Tester uses the principles of set of input values and a mapping is made of the

F
feedback and adaptive search to identify scenarios error apace. The input variables of the program are
which result in the maximum tolerable number of defined as the independent variables , and the number

— reentry vehicles penetrating the defense, An initial of assertions which become false when the program is
scenario is described and input to the test case run with a particular set of input values is defined
construction algorithm. Thia algorithm generates a as the dependent variable. Values of the dependent

- . set of input values for the program being tested. variable define an objective function of errors over
The program is executed and values are recorded which the input space. By maximizing this objective
measure its performance. The performance values are function, we can locate the values of the input
then evaluated and compared with past performance variables which cause the program to fail.
values. The change in performance values is then used

J as input to the adaptive search algorithm which NUImER OF ASSERTIONS VI OLATED
constructs a new scenario. New input data is con-
structed for this scenario and the program is run N
again. This cycle continues until scenarios are

— found which cause the maximum tolerable number of -

I reentry vehicles to penetrate the defense. The input -
values which characterize each such scenario, and the

* resulting performance values, def ine the “perform ance
-

boundary” of the program .
-

Methodology For Adaptive Testing With Assertions ~OO
TRANSIT TIME

The input pa rame te r s of a program can be
- - •

• perturbed until area~ with maximum errors (indicated
- by assertion violations) are located. This is done

(MICROS ECONDS)

in much the same way as the input parameters are

1 sys tema tically perturbed to degrade the system
performance until the performance boundary is
reached. The first step, therefore, is to add

-
- - ~~

.‘ assertions to the code to be tested , if that has not

I already been done. The important role of the aaser—
• tions in this type of testing cannot be emphasized PROPORTION OF SEARC H PULSES

(PROBABILITY)enough : they should be interspersed throughout the

code at appropriate places2 , there must be a Figure 1. Input Space Boundary

I ficient number of assertions to monitor each var-
iable , and they must correctly state the performance Neving defined the error function in much the
requirements of the variables. In other words, the same way as the performance function is defined for
success of this type of testing depends on the the Adaptive Tester, the fifth step then is to use
validity and comprehensiveness of the assertions, the search algorithms of the Adaptive Tester to

locate values in the program ’s input variables which
To assure the correctness of the assertions, cause the most errors to occur. The reason we search

the second step is to perform preliminary tests of for the area of maximum assertion violations is tothe program with varied input values. A frequent unco’~er as many errors as possible. Although someI. result of this initial testing is that unsuspected errors will cause several assertions to be violated ,
• errors in the code are unc,vered by the assertions, other errors are only indicated by a single assertion

Any errors in the code or the assertions should be failure; therefore , it may be necessary for thecorrected before continuing ,
entire input space be searched for all possible
violations, A major assumption in the research is

The third step is to conatruct a set of test that errors will occur in clusters.
data by specifying the possible range of valueR for1. the input variables. The initial value of a variable Figure 2 shows the organization of the
is the minimum boundary value and the upper limit adaptive testing programs. A test case construction
(and final value) is the maximum specified value, algorithm takes the initial test data and contructs aI . Next , some interval is chosen throu&~ which the value set of input values with which to run the program.— of the variable will be stepped during the testing.

• . In this way, a “grid” of input values is defined over
the input space. Figure 1 shows the input space
boundaries for a program which was used as part of an BASIC ~ I TEST CASE

- ex perimen t to determine if it was feasible to merge TEST ~~~~~~~ CONSTRUCTION
the adaptive testing methods with the use of cxc— DATA ALGORITIm L PR0GARM1
cutable assertions for this type of testing. The
input val ues of the transit times were within the

- rang e of 0 to 300 microseconds. The probability of

SEARCH T~~1 ASS ERTION
I any one pulse request in the sequence of requests

being a search pulse was allowed to range between 0
and 1.

EVALUATO R I
•

•

- Once the range of input values is specified and T GOR I I I
the interval chosen , the rest of the testing is
automated . The tester is relieved not onl y of the
chore of choosing new input data but also of the
tedious task of wading through reams of output to Figure 2. Sof tware for Adaptive Testing Using

! ver i fy the results of each test case. During the Assertions
fourth step, the program is executed once for esch

2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——-n~~~~~~~~ - -— .i.ar. ~~ ,, - • - - “-. ‘



• “~~~flfl r-~, - _~~~~~ _.,~_ . 
_________

• 
-
~~~~~~~ 

/
‘—_

~~~- •s—
~
,
~~~~ -~~~

’__ ’_•
~ ’__—-

These input data values are also recorded in the test These results were generated by varying the mean of

• L results file for use by the search algorithm in the transit times for track pulses from 0 to 300
altering the input data. The program is run and the microseconds in steps of 30 microseconds and by
assertion evaluator evaluates the assertions as the y varying the probability of any one pulse ’s being a

false. The test results file i~ then read by the of assertions violated (for a p ar t icular pair of
are executed and records any assertions that become search pulse from 0 to 1 in steps of 0.1. The numbe r

L search algorithm, which computea new values for the values) is plotted in the vertical axis. The number

• input variables based upon the assertions violated of assertions violated ranged from a maximum of 20 to
and the peat history of the tests. These new values a minimum of 0. The assertion violations were the
are input to the test case construction algorithm , result of latent errors in the program which had not
which forms a new set of inpu t values for the program been discovered during all the previous types of
and executes i t . testing.

to determine what the error space of a program looked

V.

Experience With Adaptive Testing Using Assertiona The ‘purpose of this preliminary experiment was

The process that generates a radar schedule in like and whether it was feasible to use adaptive

object for a preliminary evaluation of this method of results of this experiment showed that the “error
a missile defense simulation was chosen as the test search techniques to maximize an error function. The

behaved. It contained maximums , minimums , and
•

- sequence of req uests for radar pulses and from these
testing software.

3 This set of modules takes a
surface ” from testing this set of modules was well

constructs a timing schedule for the radar. The
gradients which could be used by various search

time , and the length of time between the transmit The range of values for the two input variables was

techniques to locate the values in the input space
requests may be for search, special search, track, or which cauae the most errors.

• - ver ify pulses , although for this experiment only
search and track pulses were used. Also included in At the conclusion of this first experiment,

which the pulse should be sent, the desired transmit for example, concerns the size of the input space.

each request is the beam position (direction) in there were , however , many unanswered question. One ,

time and the expected time of the reception of a
reflection from the object. This last value is the

very small , and therefore it was relatively easy to
test a large sample of input sequences which varyk “ transit time” of the pulse. From this sequence of only slightly. With larger input spaces, sequences

requests , a schedule for the radar is constructed. of inputs which are very different would have to be
This schedule must not overlap transmitted pulses
with each other or with listening times (“teceive

generated in order to cover the input space with a

windows”) and must allow sufficient time between
reasonable number of test cases.

pulses and receive windows to switch beam positions, The main research question to be answered , of
i.e., “look” in another direction. course , is whether adaptive search techniques can be

applied to the testing of computer programs; that is ,
In order to show the error space more clearly, whether errors can be located automatical ly. This• two of the input variables were chosen as independent

variables in the experiment: the transit time for
question can be broken down into a number of other

pulses (i.e., the time between the transmission of
questions :

the pulse and the receive window) and the number of 1. What does the error function of a typ ical
search pulses in the input sequence. Random input program look like and is it as well behaved as
values were generated to simulate a real—time proc— the one in the preliminary experiment?

I

•

~
j ess . The number of assertion violations for each set

of input values was tabulated during the testing for This includes the questions of whether the error
use in constructing a three—dimensional grid. apace of the program contains singularities ,

whether it is multi—modal , and whether errors
Figur e 3 shows the results from testing this are lumped or randomly dis tr ibuted.[program with the set of input values previously

illustrated in Figure 1. 2. What search methods are applicable to locating
error maxima?

[ASS ERTION VIOLA TI ONS Depending upon the behavior of the e r ro r

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

func tion , one or more of the search methods
developed in the adaptive testing research could
be applied. In addition , there may be rules of
thumb, program—dependent or not , which could be

[applied to make the search techniques more
e f f i c i e nt .

TIME
•

defined using assertions?
TMN SIT 3 Are there other objective functions which can be

1. The objective function formed by merely summing
• • the number of assertions that were violated is a
• crude one, Other possible ways in which to

1.111 construct the objective function include weight

• •
lu g the assertions in some way or selecting a

• • • •
subeet of the assertions to use.

IBJImER OF
SEARCH A second experiment on a much larger scale is
PULSES now in progress to delve further into the answers to

these questions. There are two approache s that could
Figure 3. Examp le of an Error Space ~~~ be used to address the question regarding error

3

-

- •

‘

‘ w”- ~~

contained errors , the other would be to seed a program function.
with errors. Since it would be d i f f icu l t to select a[

spaces: one method would be to examine programs which provides a further refinement of the objective

L

set of programs containing a representative class of Conclusion
errors , the second method seemed preferable because
the number and types of errors could be varied. A The current experiment will provide a second
complex so f twa re program which computes o r b i t a l evaluation of the effectiveness of using executable
elements was selected as the test object. Assertions assertions for software testing. The results will

— were added , and a set of errors for “seeding ” the give art indicati9n of the properties of the error
program was generated using methods developed by function (e.g. continuity) for a typical computer

current research.4 The errors are representative of program which containa typical errors. Not only is

I:
those found in large programs in both type and for each sample of errors the ef f ic iency of the search

the error function of the program being exp lored , but

frequency of occurrence ,5 and the sites chosen for the method is being evaluated. The resulting performance
seed ing were randomly selected. of the search algorithm chosen for this experiment

-; will suggest other search methods which could be used
The input values to the program will be con— to examine the error space. In addition , the per—L aidered two at a t ime to construct a three—dimensional formance of the adaptive search technique in locating

error space. The values of the other input variables the maximum value of the error function will indicate

- will remain fixed. The error function of the program how much automation is possible in the testing of

I will be examined by f i r s t constructing a coarse grid computer programs.
of input values as in the preliminary experiment.
Then the chosen search method and adaptive testing Acknowledgement
software will be used to map the error space of the

- program in more detai l . This research was sponsored by the Air Force
Of f i ce of Scientific Research (AF SC) , United States

From the error functions derived frou each Air Force , under Contract F49620—79—C—0115. The
two—variable case , a complete error map will be United States Government is authorized to reproduce
constructed for the program. The error space map will and distribute reprints for governmental purposes

- give a good indicat ion of the shape and character— notwithstanding any copyright notation hereon.
istics of the error function of the program. The
shape of the error function will determine which References
search algorithms are moat applicable to locating the
input values of the program which lead to the most 1. 0. W. Coope r , “Adaptive Testing ,’ Second Inter—
errors. The performance of the search algorithm national Conference on Software Engineering, 13—1~
chosen for the experiment will be evaluated. Octo ber 1976 , San Francisco , CA.

In regard to the question of applicability of 2. 0, M. Andrews , “Using Executable Assertions for
search me thods , the moat use fu l algorithm for Testing and Fault Tolerance” , The Ninth Annual

- this application of the Adaptive Tester appears to be I n t e r n a t i o n a l Symposium on F a u l t — T o l e r a n t Com—

the “ complex search’ which was invented by Box6 as a
puti ng, 20—22 June 1979 , Madison , WI.

“ - method for solving problems with nonlinear objective 3. J. Benson , S. Saib , “ A Software Quality Assurance— functions subject to nonlinear inequality constraints . Experiment ,” Software Quality Assurance Workshop,
- - The technique is as follows . Choose a set of points 15—16 November 1978 , San Diego , CA.at random and determine the value of the objective
J function at each one, Then replace the point with the 4. C. Cannon , R. Neeson , N. Brooks , “An Experimental

worst performance value with another point which lies Evaluation of Software Testing,” Final Report,on a line formed by the rejected point and the General Research Corporation , CR—1—854, Hay 1979.
• d ents is then calculated to determine the exactI . centroid of the remaining points. A set of coeffi—

5. T. A. mayer et ml., Sof tware Reliabi l i ty St udy,l o c a t i o n of the new p o i n t . These c o e f f i c i e n t s •j’p,54 Defense and Space Systems Group RADC—TR76— 238 ,d e t e r m i n e the degree of r e f le c l i o n , expansion , Redondo Beach, CA , August 1976.shrinkage , contraction , and rotation to be applied in

I

- forming the new set of points. The set of random 6. N. J. Box, “A New Method of Constrained Optimi—
points (N + 1 ii there are N dimensions to the zat ion and Comparison with Other Methods ,”

- problem) is called a complex. New points are selected Comp~uter Journal, Vol. 8 (1965), pp. 42—52.for the complex using the above technique until a
solution is found. The advantage of this technique is

-
that it is somewhat ismune to plateaus , disconti—
nuities , and surface irregularities.

= “~ As an initial step toward studying the third I LOOs5’31O~~
1’

~’~”
question , the objective function has been constructed

~~~~~~~~ GaA&lin a d i f f e r e n t  way for the second exper iment .  This
t ime the t a b u l a t i o n  of assertion violations will ~~IC TA3
con ta in  not on ly  the t o t a l  number of a s s e r t i o n  i~~’~~ouncedv iola tions but also how m any different assertions are

• 
- - violated. The distinction is that the number of total t j~.~tiricatLDfl._.

J 

violations may represent one assertion that is in a —

loop and is violated over and over , or it may repre-
sent the violation of many assertions. By keeping By.,..,...,,,........—’—-’—”
track of the number of different assertions violated ,

I 

- i t  is possible to determine whether more than one I Di U’ 9fl
assertion (and therefore moat l i ke ly  more than one
error) is involved in the to ta l  violations. This A ,~~~,lttY ~

Q4.~L~.—.-..---

~ j~’iati end / Or

Ii t Dis t spec al

Lff’ i \ ~~

~ 

-—-—‘-* -- ~~~~~~~~~~~~~~~~~~~ - A


